<u>Topic</u>: The general quadratic formula

Lesson: 7 Name:

The rule is used to solve quadratics of the form; $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where a, b and c are constants and $a \neq 0$.

The axis of symmetry is given by the equation; $x = \frac{-b}{2a}$

Example 1 - Your turn!

Use the general quadratic formula to solve for x, where $x^2 - 4x - 6 = 0$.

Example 2 - Your turn!

Use the general quadratic formula to solve for x, where $3x^2 + 2kx - 1 = 0$.

<u>Topic</u> : The general quadratic formul	Topic:	The gener	al quadratic	formula
---	--------	-----------	--------------	---------

Lesson: 7 Name:

Example 3 – Your turn!				
Sketch the graph of $y = 3x^2 - 18x + 13$. Use the quadratic formula to calculate				
·				
the x - axis intercepts. Also, find the axis of symmetry and hence the turning				
point.				
points.				

<u>Topic</u>: The general quadratic formula

Lesson: 7 Name:

Extension

Using the quadratic formula and completing the square, it is possible to write a general rule for the coordinates of the turning point of the graph of $y = ax^2 + bx + c$ in terms of a, b and c.

Complete the square for $y = ax^2 + bx + c$ and write it in turning point form and hence write the coordinates of the vertex in terms of a, b and c.